The Role of Periphyton in Phosphorus Retention in Shallow Freshwater Aquatic Systems

نویسنده

  • Walter K. Dodds
چکیده

Eutrophication caused by phosphorus (P) leads to water quality problems in aquatic systems, particularly freshwaters, worldwide. Processing of nutrients in shallow habitats removes P from water naturally and periphyton influences P removal from the water column in flowing waters and wetlands. Periphyton plays several roles in removing P from the water column, including P uptake and deposition, filtering particulate P from the water, and attenuating flow, which decreases advective transport of particulate and dissolved P from sediments. Furthermore, periphyton photosynthesis locally increases pH by up to 1 unit, which can lead to increased precipitation of calcium phosphate, concurrent deposition of carbonate-phosphate complexes, and long-term burial of P. Actively photosynthesizing periphyton can cause super-saturated O 2 concentrations near the sediment surface encouraging deposition of metal phosphates. However, anoxia associated with periphyton respiration at night may offset this effect. Linking the small-scale functional role of periphyton to ecosystem-level P retention will require more detailed studies in a variety of ecosystems or large mesocosms. A case study from the Everglades illustrates the importance of considering the role of periphyton in P removal from wetlands. In general, periphyton tends to increase P retention and deposition. In pilot-scale constructed periphyton-dominated wetlands in South Florida, about half of the inflowing total P was removed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecology of Terrace Wet Rice-fish Environment and Role of Periphyton

The waterlogged terrace wet rice-fields of Apatani Plateau located at an altitude of 1500msl in Arunachal Pradesh of the north eastern India are stocked with fish Common carp (Cyprinus carpio L) for several decades. The fishes are not fed with supplementary feeds because of the rich organic nature of the rice-fields. The study on water and soil of these fields revealed a strong corelation to su...

متن کامل

Periphyton Biomass Response to Phosphorus Additions in an Aquatic Ecosystem Dominated by Submersed Plants

An experiment was conducted to investigate the response of periphyton biomass to addition of phosphorus (P) in an aquatic ecosystem dominated by submersed plants. Aquatic ecosystems dominated by Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara were constructed in mesocosm aquaria. Mesocosms were dosed weekly with different P loads (0 μg/L/Week and 100 μg/L/Week) for 17 wee...

متن کامل

The Behavior of Organic Phosphorus under Non-Point Source Wastewater in the Presence of Phototrophic Periphyton

To understand the role of ubiquitous phototrophic periphyton in aquatic ecosystem on the biogeochemical cycling of organic phosphorus, the conversion and removal kinetic characteristics of organic phosphorus (Porg) such as adenosine triphosphate (ATP) were investigated in the presence of the periphyton cultured in artificial non-point source wastewater. The preliminary results showed that the p...

متن کامل

New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems.

Argentina is the second largest world producer of soybeans (after the USA) and along with the increase in planted surface and production in the country, glyphosate consumption has grown in the same way. We investigated the effects of Roundup (glyphosate formulation) on the periphyton colonization. The experiment was carried out over 42 days in ten outdoor mesocosms of different typology: "clear...

متن کامل

The Effects of Ultraviolet Radiation and Nutrient Additions on Periphyton Biomass and Composition in a Sub-Alpine Lake (Castle Lake, USA)

Rising levels of ultraviolet radiation (UVR) striking the Earth’s surface have led to numerous studies assessing its inhibitory effects on phytoplankton and periphyton in aquatic systems. Mineral nutrients such as nitrogen (N) and phosphorus (P) have been shown to increase aspects of algal metabolism and compensate for UVR inhibition. An in situ substratum enrichment technique and UV shielding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003